

Betriebsanleitung für Wendelförderer Operating Instructions for helical conveyor

Original Betriebsanleitung

Copyright by SIM Automation GmbH

EG-EINBAUERKLÄRUNG nach Anhang II EG-RICHTLINIE 2006/42/EG

Der Hersteller SIM Automation GmbH

Liesebühl 20

D-37308 Heilbad Heiligenstadt

erklärt hiermit, dass die nachstehend beschriebene unvollständige Maschine,

Maschinentyp: Wendelförderer

zum Einbau in eine Maschine, bzw. zum Zusammenbau mit anderen unvollständigen Maschinen zu einer Maschine bestimmt ist und dass deren Inbetriebnahme solange untersagt ist, bis festgestellt wurde, dass die Maschine in die o.g. eingebaut werden soll, den Bestimmungen der EG-RICHTLINIE 2006/42/EG vom 17.Mai 2006 entspricht. Bei Änderungen, die nicht schriftlich mit dem Hersteller abgestimmt werden, verliert diese Erklärung ihre Gültigkeit.

Angewendete harmonisierte Normen:

DIN EN ISO 12100: 2010 Sicherheit von Maschinen

Allgemeine Gestaltungsleitsätze - Risikobeurteilung und

Risikominderung (ISO 12100:2010); Deutsche Fassung EN ISO 12100:2010

DIN EN 60204-1: 2010 Sicherheit von Maschinen

Elektrische Ausrüstung von Maschinen

Teil 1: Allgemeine Anforderungen (IEC 60204-1:2006)

Deutsche Fassung EN 60204-1:2006/A1:2010

ISO 13850: 2015 Sicherheit von Maschinen

NOT-HALT-Gestaltungsleitsätze (ISO 13850:2015);

Deutsche Fassung EN ISO 13850:2015

Die speziellen technischen Unterlagen dieser unvollständigen Maschine wurden gemäß Anhang VII Teil B (EG-RICHTLINIE 2006/42/EG) erstellt.

Diese werden auf begründetes Verlangen einzelstaatlichen Stellen als Kopie in Papierform übermittelt.

Heilbad Heiligenstadt, 06.05.2019

Dr. Winfried Büdenbender – Geschäftsführer

Block, Mario – Leiter Entwicklung

bevollmächtigt, die technischen Unterlagen

zusammenzustellen

Telefon: +49 (0) 3606 / 690-0 Telefax: +49 (0) 3606 / 690-370 E-Mail: info@sim-automation.de Internet: www.sim-automation.de

	Seite / Page
Betriebsanleitung für Wendelförderer	5 - 31
Instruction manual for helical conveyor	32 - 58

Inhaltsverzeichnis

1.	Sicherheitshinweise	7
1.1.	Allgemeines, Symbole und Hinweise	7
1.2.	Grundlegende Sicherheitshinweise	7
1.3.	Sicherheitshinweise zur bestimmungsgemäßen Verwendung	8
1.4.	Sorgfaltspflicht des Betreibers	8
1.5.	Personalauswahl und Qualifikation, grundsätzliche Pflichten	9
1.6.	Sicherheitshinweise zu bestimmten Betriebsphasen	9
1.6.1.	Inbetriebnahme	9
1.6.2.	Normalbetrieb	10
1.6.3.	Wartungs- und Instandsetzungsarbeiten	10
1.7.	Risikobeurteilung	11
1.7.1.	Schutzmaßnahmen gegen elektrische Gefährdungen	11
1.7.2.	Schutzmaßnahmen gegen Magnetismus	12
2.	Gerätebeschreibung – Produktbeschreibung	13
2.1.	Bestimmungsgemäße Verwendung	13
2.2.	Warnhinweise in Bezug auf Fehlanwendungen	13
2.3.	Definition der Laufrichtung	13
2.4.	Funktionsbeschreibung	14
2.5.	Prinzipieller Aufbau	14
2.6.	Technische Daten	15
2.6.1.	Übersicht: Wendelförderer - Schwingantriebe	15
2.6.2.	Technische Parameter	16
2.6.3.	Anzugsmomente, Magnetspalt	17
2.6.4.	Wendelfördererkombinationen: Produktprogramm 2019	17
2.6.5.	Füllmenge Wendelfördereraufsatz	18
2.6.6.	Bestellhinweise – Bestellschlüssel	19
3.	Inbetriebnahme	20
3.1.	Einschalten des Wendelförderers	20
3.2.	Bedienung während des Betriebes	20
3.3.	Ausschalten des Wendelförderers	20
4.	Funktionsablauf	21
4.1.	Wendelförderer- Zuführsystem mit Bunker (2 Stausensoren)	21
4.2.	Wendelförderer- Zuführsystem ohne Bunker (2 Stausensoren)	22
4.3.	Wendelförderer- Zuführsystem ohne Bunker (1 Stausensor)	23
5.	Hilfe bei Störungen und Fehlerbeseitigung	24

6.	Wartung und Instandhaltung, Reinigung	25
7.	Hinweise für den Transport	26
7.1.	Transport	26
7.2.	Lagerung	27
8.	Hinweise für Aufstellung und Justage	28
8.1.	Wendelförderer entgegen nehmen / auspacken	28
8.2.	Montage, Aufstellung und Justage	28
8.3.	Elektroinstallation	29
9.	Außerbetriebnahme, Entsorgung	30
10.	Zubehör Wendelförderer	30
11.	Ersatzteile – Verschleißteile	31
11.1.	Bestellhinweise	31
11.2.	Ersatz- und Verschleißteilliste	31
12.	Anlagen	31

1. Sicherheitshinweise

1.1. Allgemeines, Symbole und Hinweise

In der folgenden Betriebsanleitung werden konkrete Sicherheitshinweise gegeben, um die nicht zu vermeidenden Restrisiken beim Betrieb des Wendelförderers darzustellen.

Die in der Betriebsanleitung verwendeten Symbole sollen auf die Sicherheitshinweise aufmerksam machen!

Gefahr für Gesundheit und Leben

Dieses Symbol weist darauf hin, dass vor allem Gefahren für Leben und Gesundheit von Personen bestehen. Diese Hinweise müssen unbedingt beachtet werden!

Gefahr für Gesundheit und Leben durch elektrische Spannung

Dieses Symbol weist darauf hin, dass vor allem Gefahren für Leben und Gesundheit von Personen auf Grund elektrischer Spannungen besteht. Diese Hinweise müssen unbedingt beachtet werden!

Achtung: Gefahr für Maschine und Umwelt

Dieses Symbol weist darauf hin, dass vor allem mit Gefahren für Maschine, Material und Umwelt zu rechnen ist.

Das jeweils verwendete Symbol kann den Text des Sicherheitshinweises nicht ersetzen.

Der Text ist daher immer vollständig zu lesen! Die Grundvorrausetzung für den Umgang mit dem Wendelförderer ist die Kenntnis der Betriebsanleitung und der enthaltenen Warn- und Sicherheitshinweise.

1.2. Grundlegende Sicherheitshinweise

Der Wendelförderer ist nach dem Stand der Technik, den anerkannten sicherheitstechnischen Regeln und arbeitsmedizinischen Vorschriften gebaut. Bei unsachgemäßer Verwendung können jedoch Gefahren für Leib und Leben des Benutzers oder Dritter bzw. Beeinträchtigungen am Wendelförderer oder an anderen Sachwerten entstehen. Die Betriebsanleitung enthält die wichtigsten Sicherheitshinweise um den Wendelförderer sicherheitsgerecht zu verwenden.

Die Betriebsanleitung ist ständig am Einsatzort des Wendelförderers aufzubewahren, so dass sie für den Bediener griffbereit bzw. einsehbar ist. Jeder Bediener ist verpflichtet, die Betriebsanleitung zu lesen, bevor er mit der Tätigkeit am Wendelförderer beginnt.

Besonders ist darauf zu achten, dass das Personal, welches nur selten am Wendelförderer arbeitet, um beispielsweise Wartungs- bzw. Instandhaltungsarbeiten durchzuführen, Kenntnis von der Betriebsanleitung hat. Ergänzend zur Betriebsanleitung sind die allgemeingültigen, sowie die örtlichen Regelungen zur Unfallverhütung, das Arbeitsschutzgesetz, die Betriebssicherheitsverordnung und die Verordnungen zum Umweltschutz bereitzustellen und zu beachten!

Alle Sicherheitshinweis-Schilder und Bedienhinweis-Schilder am Wendelförderer sind immer in einem gut lesbaren Zustand zu halten.

Beschädigte oder unlesbar gewordene Schilder sind umgehend zu erneuern.

1.3. Sicherheitshinweise zur bestimmungsgemäßen Verwendung

Der Wendelförderer ist nur in technisch einwandfreiem Zustand, sicherheits- und gefahrenbewusst, bestimmungsgemäß, unter Beachtung der Technischen Dokumentation, insbesondere der Betriebsanleitung (Kap. Bestimmungsgemäße Verwendung) zu benutzen!

Weiterhin sind die allgemein und territorial gültige Bestimmungen (z.B. Gesetze, Verordnungen, Richtlinien, Normen, Unfallverhütungsvorschriften, Brandschutzvorschriften, Arbeitssicherheitsvorschriften, Betriebsanweisungen, usw.) zu beachten!

Jeder andere oder darüber hinausgehende Gebrauch gilt als nicht bestimmungsgemäß und ist somit verboten. Für daraus resultierende Gefahren für Leib und Leben von Personen sowie Schäden am Wendelförderer oder anderer Vermögenswerte haftet der Hersteller/Lieferant nicht. Das Risiko hierfür trägt allein der Betreiber.

Außerdem erlischt die Herstellergarantie für den Wendelförderer!

Der Wendelförderer darf nicht betreiben werden:

- in feuchter oder nasser Umgebung
- bei Temperaturen unter 5°C und über 45°C
- in explosiver oder leicht entflammbarer Umgebung

1.4. Sorgfaltspflicht des Betreibers

Der Betreiber muss sicherstellen, dass die Betriebsanleitung stets in einem leserlichen Zustand, vollständig und griffbereit an Einsatzort des Wendelförderers aufbewahrt wird.

Der Betreiber ist verpflichtet, alle Personen, die am oder mit dem Wendelförderer arbeiten, mit den grundlegenden Vorschriften bezüglich Arbeitssicherheit, Unfallverhütung, sowie Umweltschutz regelmäßig vertraut zu machen. Weiterhin muss der Betreiber sicherstellen, dass diese Personen mit der Betriebsanleitung und insbesondere mit den darin befindlichen Warn- und Sicherheitshinweisen vertraut sind.

Der Betreiber muss insbesondere sicherstellen, dass der Wendelförderer nur in einwandfreiem, funktionstüchtigem Zustand betrieben wird und erforderliche persönliche Schutzausrüstungen für das Bedienungs-, Wartungs- und Reparaturpersonal zur Verfügung stehen und benutzt werden. Ergänzend zur Betriebsanleitung sind allgemeingültige, gesetzliche und sonstige verbindliche Regelungen zur Unfallverhütung und Arbeitssicherheit anzuweisen und zu beachten!

Das Liegenlassen von Gegenständen aller Art im Wendelförderer ist untersagt!

1.5. Personalauswahl und Qualifikation, grundsätzliche Pflichten

Es darf nur geschultes oder unterwiesenes und zuverlässiges Personal eingesetzt werden! Die Zuständigkeiten des Personals für Transport, Inbetriebnahme, Betrieb, Wartung, Instandhaltung, Außerbetriebnahme und Entsorgung sind klar festzulegen. Es ist sicherzustellen, dass nur dazu beauftragtes Personal am Wendelförderer tätig wird!

Als qualifizierte Personen gelten:

- Maschinenplaner und Konstrukteure, die die notwendigen Fähigkeiten zur Bedienung des Wendelförderers besitzen.
- Bedienungspersonal, das mit dem Inhalt dieser Betriebsanleitung vertraut ist, am Wendelförderer eingearbeitet worden ist und die notwendigen Fähigkeiten zur Bedienung des Wendelförderers besitzt.
- Inbetriebnahme- und Servicepersonal, das am Wendelförderer ausgebildet, befugt und fähig ist, solche Geräte nach den gültigen Sicherheitsmaßstäben in Betrieb zu nehmen und instand zu halten.

Alle Personen, die Tätigkeiten am Wendelförderer ausführen, müssen die Betriebsanleitung lesen und durch ihre Unterschrift bestätigen, dass sie die Betriebsanleitung verstanden haben. Anzulernendes Bedienungspersonal darf zunächst nur unter Aufsicht einer erfahrenen Person am Wendelförderer arbeiten! Die abgeschlossene und erfolgreiche Einweisung sollte schriftlich bestätigt werden. Das gesetzlich zulässige Mindestalter des Personals ist zu beachten!

Arbeiten an elektrischen Ausrüstungen des Wendelförderers dürfen nur von Elektrofachkräften oder von unterwiesenen Personen unter Leitung und Aufsicht einer Elektrofachkraft, gemäß den elektrotechnischen Regeln vorgenommen werden! Alle Steuerungs- und Sicherheitseinrichtungen dürfen grundsätzlich nur von eingewiesenen Personen betätigt werden.

Das Personal darf keine offenen langen Haare, lose Kleidung oder Schmuck einschließlich Ringe tragen. Es besteht Verletzungsgefahr z.B. durch hängen bleiben!

1.6. Sicherheitshinweise zu bestimmten Betriebsphasen

1.6.1. Inbetriebnahme

Die Inbetriebnahme des Wendelförderers darf nur von qualifizierten Personen unter Beachtung der Sicherheitshinweise durchgeführt werden.

Der Bediener hat sich ausreichend vertraut zu machen mit:

- der Betriebsanleitung und den darin befindlichen Warn- und Sicherheitshinweisen,
- den Bedien- und Steuerelementen des Wendelförderers,
- der Arbeitsweise des Wendelförderers,
- dem unmittelbaren Umfeld des Wendelförderers,
- den Maßnahmen für einen Notfall.

1.6.2. Normalbetrieb

Wendelförderer darf nur in technisch einwandfreiem Zustand, bestimmungsgemäß, sicherheits- und gefahrenbewusst, unter Beachtung der Technischen Dokumentation, insbesondere die Betriebsanleitung betrieben werden.

Jede sicherheitsbedenkliche Arbeitsweise ist zu unterlassen!

Vor dem Einschalten des Wendelförderers ist sicher zu stellen, dass keine Person, durch die Inbetriebnahme gefährdet werden kann!

Alle Gegenstände und sonstige Materialien, die nicht für den Betrieb des Wendelförderers benötigt werden, sind aus dem Arbeitsbereich zu entfernen.

Bei sicherheitsrelevanten Änderungen des Wendelförderers oder seines Betriebsverhaltens, ist dieser sofort still zu setzen, zu sichern und die Störung der zuständigen Stelle/Person zu melden! Abweichungen vom Normalbetrieb (z.B. höhere Leistungsaufnahme, Temperaturen oder Schwingungen, ungewöhnliche Geräusche und Gerüche) lassen erkennen, dass die Funktion beeinträchtigt ist.

Im Zweifelsfall ist der Wendelförderer sofort außer Betrieb zu nehmen!

1.6.3. Wartungs- und Instandsetzungsarbeiten

Um Fehlern in der Produktion vorzubeugen, ist es notwendig in den vorgeschriebenen Intervallen die Wartungs- und Instandsetzungsarbeiten von autorisiertem Personal durchführen zu lassen.

Bei allen Arbeiten die im Zusammenhang mit Wartungs- und Instandsetzungstätigkeiten, sowie dem Rüsten stehen, sind die Regeln und Anweisungen der Unfallverhütungsvorschrift zu beachten.

Durch bewegte Maschinenteile besteht die Gefahr, dass sich Personen verletzen können.

Das Bedienpersonal ist vor Beginn der Wartungs- oder Instandsetzungsarbeiten zu informieren. Gegebenenfalls ist der Arbeitsbereich weiträumig abzusichern.

Bei vollständigem Abschalten der Zuführung/Maschine ist darauf zu achten, dass ein unerwartetes und ungewolltes Einschalten wirkungsvoll verhindert wird. Die notwendigen Steuereinrichtungen sind entsprechend zu sichern.

Wird der Wendelförderer-Antrieb im Zuge der Wartungs- und Instandsetzung demontiert, ist die Stromzufuhr zur Maschine zu trennen.

Es muss sichergestellt werden, dass eine Herstellung der Stromzufuhr, die nicht im Rahmen der Wartungs- und Instandsetzungsarbeiten notwendig ist, nicht erfolgen kann

Bei der Demontage großer Wendelförderer oder Baugruppen, ist es erforderlich, diese an geeigneten Hebezeugen zu befestigen und zu sichern. Es sind nur technisch einwandfreie und geeignete Hebezeuge zu verwenden. Der Aufenthalt und die Arbeit unter schwebenden Lasten sind verboten! Mit dem Anschlagen von Lasten und Einweisen von Kranfahrern dürfen nur erfahrene Personen beauftragt werden. Der Einweiser muss sich immer in Sichtweite des Bedieners aufhalten oder mit ihm in Sprechkontakt stehen.

Als Ersatz- und Verschleißteile sind nur Originalteile zugelassen, denn nur diese erfüllen alle technischen Ansprüche des Herstellers.

Durch eigenmächtig durchgeführte Veränderungen des Wendelförderers, verlieren Sicherheitskonzept und Einbauerklärung ihre Gültigkeit.

Bei der Reinigung des Wendelförderers dürfen nur fusselfreie Putztücher und keine aggressiven Reinigungsmittel verwendet werden.

1.7. Risikobeurteilung

1.7.1. Schutzmaßnahmen gegen elektrische Gefährdungen

Arbeiten an stromführenden Bauteilen ist nur von geschultem und autorisiertem Fachpersonal durchzuführen.

Risiken durch Elektrische Energieversorgung:

Elektrischen Kontakt (direkt oder indirekt), elektrostatische Vorgänge, thermische Strahlung oder Vorgänge wie wegspritzen geschmolzener Teile, chemische Vorgänge bei Kurzschlüssen, Überlastungen usw., äußere Wirkung auf elektrische Einrichtungen, Elektromagnetische Verträglichkeit,

Funken, Entzünden, Stromschlag:

Gefahrenbereich: Elektroinstallation

Sicherheitsmaßnahmen: Ausführung der elektrischen Ausrüstung nach EN 60204 (VDE0113) und BGV

Α3

Arbeiten an der Elektroinstallation nur von autorisiertem Fachpersonal

Belehrung des Bedienpersonals

Restrisiko: bei Einricht- und Wartungsarbeiten

Die Vorschriften der EMV wurden beim Bau der Anlage berücksichtigt!

Schutzmaßnahmen beim Einsatz von Steuergeräten:

Bei den verschiedenen Steuergeräten (RGF..., RGFZ), wird über den Netzschalter Null und Phase zum Ausgang getrennt abgeschaltet.

Bei den verschiedenen Einschüben (ERGF...), wird über den Netzschalter nur die Phase zum Ausgang getrennt abgeschaltet. Die Einschübe dürfen nur in Gehäusen mit dem entsprechenden Schutzgrat nach VDE verbaut werden.

Alle oben aufgeführten Einschübe und Geräte haben keine Netztrennung am Ausgang, es wird jeweils die Phase über das Regelgerät gesteuert.

Es ist zwingend erforderlich, dass der Netzanschluss (PE, L1, N) gemäß VDE und nach den geltenden Vorschriften vorgenommen wird, und die Einzeladern (PE, L1, N) nicht durch flexible Verkabelung vertauscht werden können.

Bei Gefahren eines Fehlerstromes, zum Beispiel, das Durchscheuern oder Quetschen der Anschlusskabel ist es notwendig, einen FI-Schutzschalter vor das Gerät zu schalten.

1.7.2. Schutzmaßnahmen gegen Magnetismus

Die im Wendelförderer-Antrieb verbauten Schwingungsmagneten sind nach DIN VDE 0580 konstruiert und hergestellt. Sie entsprechen somit dem Stand der Technik und erfüllen die Bestimmungen für elektrische Geräte im vollen Umfang. Demzufolge besteht keine Gefährdung für Mensch oder Datenträger.

Die Schwingungsmagnete dürfen nur entsprechend den Angaben auf dem Leistungsschild angeschlossen werden. Dies ist nur von geschultem und autorisiertem Fachpersonal durchzuführen.

Bei einem Fehlverhalten im Umgang mit dem Produkt durch falsche Montage, sowie falschem Anschluss kann es u.a. zu starken Geräuschen, starken Vibrationen, Spannungen und Erwärmungen kommen.

Es sind die üblichen Sicherheitsbedingungen von magnetischen Komponenten zu beachten aufgrund des Streu- und magnetischen Feldes.

2. Gerätebeschreibung – Produktbeschreibung

2.1. Bestimmungsgemäße Verwendung

Der Wendelförderer dient ausschließlich zum Sortieren und geordneten Bereitstellen von Massenkleinteilen für nachgeschaltete Zuführungen/Maschinen.

Der Wendelförderer ist so konstruiert und gebaut worden, dass er nur im Zusammenhang mit der entsprechenden Zuführung/Maschine funktionsrichtig und sicherheitsgemäß eingesetzt werden kann.

Eine andere, bzw. sachwidrige Verwendung ist unzulässig! Dabei sind die technische Dokumentation, insbesondere die Betriebsanleitung und die sicherheitstechnischen Maßnahmen zu beachten. Weiterhin sind die allgemein und territorial gültigen Bestimmungen (z.B. Gesetze, Verordnungen, Richtlinien, DIN-Normen, Unfallverhütungsvorschriften, Brandschutzvorschriften, Betriebsbestimmungen usw.) zu beachten.

Wird die Betriebsanleitung beim Einsatz des Wendelförderers nicht beachtet, erlischt der Garantieanspruch.

Für Schäden, die durch Nichtbeachtung der oben genannten Punkte entstehen, können keine Schadensersatzansprüche geltend gemacht werden! Es haftet allein der Betreiber des Wendelförderers.

2.2. Warnhinweise in Bezug auf Fehlanwendungen

Versehentlich können Falsch- oder Fremdteile in den Wendelförderer gefüllt werden. Wenn diese Fehlbefüllung erfolgt ist, muss der Wendelförderer ausgeschaltet und alle Falsch- oder Fremdteile per Hand entfernt werden!

2.3. Definition der Laufrichtung

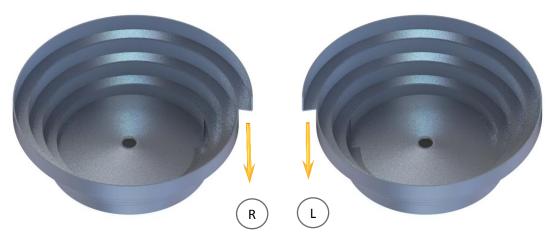


Bild 1: Rechtslauf → im Urzeigersinn

Bild 2: Linkslauf → gegen Urzeigersinn

2.4. Funktionsbeschreibung

Der Wendelförderer-Antrieb besteht aus einer Anschlussplatte (1) und einer Gegenmasse (3). Diese sind über Federpakete (2) miteinander gekoppelt. Mit Hilfe von Elektromagneten (4) wird das Feder-Masse-System in Schwingung versetzt.

Die Schwingungsentkopplung zum Maschinengestell wird durch Gummipuffer (6) gewährleistet. Der Wendelförderer-Aufsatz (7) ist über Randklemmungen oder eine Zentralbefestigung leicht lösbar mit dem Antrieb verbunden.

Das Bild 3 zeigt einen Wendelförderer-Antrieb SF 300. Die übrigen Antriebe sind nach demselben Grundprinzip aufgebaut. Unterschiede können jedoch je nach Baugröße auftreten.

2.5. Prinzipieller Aufbau

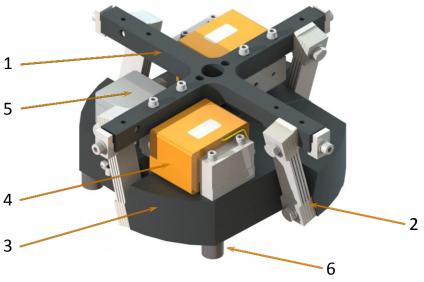


Bild 3: Wendelförderer-Antrieb

- 1. Anschlussplatte oder Kreuz
- 2. Federpaket
- 3. Gegenmasse
- 4. Schwingmagnete (Elektromagnete)
- 5. Stromversorgung
- 6. Gummipuffer
- 7. Wendelförderer-Aufsatz

Bild 4: Wendelförderer-Antrieb mit Aufsatz

2.6. Technische Daten

2.6.1. Übersicht: Wendelförderer - Schwingantriebe

	Artikel-Nr.	Bezeichnung	Zeichnung	Spannung
	1311451	SF110L1V115	2-00680-2100	115V
Schwingantrieb	1311456	SF110R1V115	2-00681-2100	1134
SF110	1312252	SF110L1V230	2-00680-3100	230V
	1312255	SF110R1V230	2-00681-3100	2307
	1311714	SF150L2V115	2-00682-2100	1157
Schwingantrieb	1311725	SF150R2V115	2-00683-2100	115V
SF150	1311736	SF150L2V230	2-00682-3100	2201/
	1311746	SF150R2V230	2-00683-3100	- 230V
	1311784	SF160L1V115	2-00684-2100	115)/
Schwingantrieb	1311812	SF160R1V115	2-00685-2100	115V
SF160	1312362	SF160L1V230	2-00684-3100	2201/
	1312365	SF160R1V230	2-00685-3100	230V
	1312267	SF220L2V115	2-00686-2100	44514
Schwingantrieb	1312269	SF220R2V115	2-00687-2100	115V
SF220	1312268	SF220L2V230	2-00686-3100	2221
	1312270	SF220R2V230	2-00687-3100	230V
Schwingantrieb	1312287	SF300L2V115	2-00688-2100	
	1312288	SF300L2H115	2-00688-2200	11.
	1312295	SF300R2V115	2-00689-2100	115V
	1312296	SF300R2H115	2-00689-2200	1
SF300	1312291	SF300L2V230	2-00688-3100	
	1312293	SF300L2H230	2-00688-3200	2201/
	1312297	SF300R2V230	2-00689-3100	230V
	1312298	SF300R2H230	2-00689-3200	
	1312435	SF500L2V115	2-00690-2100	
	1312436	SF500L2H115	2-00690-2200	445)/
	1312450	SF500R2V115	2-00691-2100	115V
	1312453	SF500R2H115	2-00691-2200	1
	1312437	SF500L2V230	2-00690-3100	
Schwingantrieb	1312438	SF500L2H230	2-00690-3200	1
SF500	1312439	SF500L4V230	2-00690-3300	1
	1312440	SF500L4H230	2-00690-3400	2201
	1312455	SF500R2V230	2-00691-3100	230V
	1312461	SF500R2H230	2-00691-3200	1
	1312467	SF500R4V230	2-00691-3300	1
	1312469	SF500R4H230	2-00691-3400	
Schwingantrieb	1312502	SF800L4H230	2-00692-3100	
SF800	1312505	SF800R4H230	2-00693-3100	230V
31 800	1312303	31 00011411230	2-00033-3100	

2.6.2. Technische Parameter

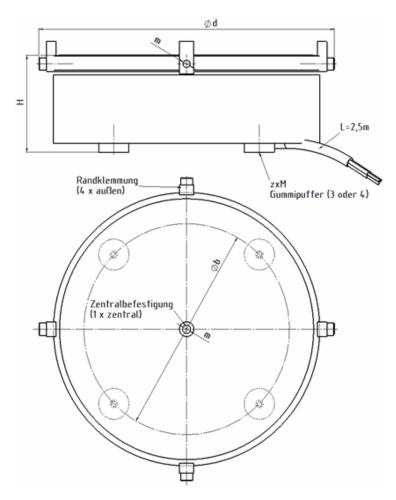


Bild 5: Abmessungen Wendelförderer

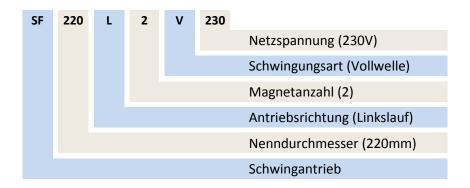
Antrieb	Ød [mm]	H [mm]	z x M	Øb [mm]	Masse [kg]	Magnet Anzahl	Strom bei 2	A max. 230V	Strom bei 1		Feder- winkel	Verbin- dung Aufsatz
							50 Hz	100 Hz	60 Hz	120 Hz		
SF 110	110	105	4xM4	84	4	1		0,3		0,6	20°	zentral
SF 150	150	70	4xM4	127	4	1		0,2		0,2	16°	zentral
SF 160	165	156	3xM6	130	12	1		1,3		2,5	22°	zentral
SF 220	220	78	4xM6	170	12	2		0,6		0,6	16°	zentral
SF 300	312	152	4xM6	266	35	2/ (4)	2,8	2,5	3,0	3,0	15°	außen
SF 500	520	238	4xM10	445	150	2/ (4)	8,0	8,0	8,0	8,0	18°	außen
SF 800	800	252	4xM16	905	440	2/ (4)	8,0		8,0		18°	außen

2.6.3. Anzugsmomente, Magnetspalt

Antrieb	Anzugsmoment Federpaket [Nm]	Anzugsmoment Aufsatz [Nm]	Magnetspalt [mm]
SF 110	8	10	0,30,4
SF 150	9	30	0,5
SF 160	30	30	0,4
SF 220	11	30	0,40,5
SF 300	60	30	0,51,5
SF 500	120	100	0,51,5
SF 800	120	100	1,6

2.6.4. Wendelfördererkombinationen: Produktprogramm 2019

Antrieb		Aufsätze	
Antrieb	Zylinderaufsatz	Stufenaufsatz	Kegelaufsatz
SF 110		S 120 PA	
2t 110		S 160 PA	
CF 1F0	Z 175 VA	S 160 PA	
SF 150		S 200 PA	
	Z 175 VA	S 200 PA	K 300 VA
	Z 200 VA	S 220 PA	
SF 160	Z 250 VA	S 260 PA	
		S 280 VA	
		S 300 PA	
	Z 250 VA	S 260 PA	K 300 VA
SF 220		S 280 VA	
		S 300 PA	
	Z 330 VA	S 350 PA	K 400 VA
		S 420 PA	K 500 VA
SF 300		S 420 VA	
		S 500 PA	
		S 500 VA	
	Z 500 VA	S 650 VA	K 650 VA
SF 500		S 750 VA	K 750 VA
		S 850 VA	K 900 VA
SF 800		S 1200 VA	K 1000 VA



2.6.5. Füllmenge Wendelfördereraufsatz

Aufsatz		Fülln	nenge	
Aut	rsatz	Masse [kg]	Volumen [L]	
	Z 175 VA	0,5	0,5	
	Z 200 VA	0,5	0,8	
Zylinderaufsatz VA	Z 250 VA	0,5	1,1	
VA.	Z 330 VA	10	4	
	Z 500 VA	50	10	
	S 280 VA	2	1,2	
	S 420 VA	10	5	
	S 500 VA	10	7	
Stufenaufsatz VA	S 650 VA	50	12	
VA.	S 750 VA	50	24	
	S 850 VA	50	30	
	S 1200 VA	80	100	
	S 120 PA	0,1	0,1	
	S 160 PA	0,5	0,1	
	S 200 PA	0,5	0,2	
o. f. f	S 220 PA	0,5	0,2	
Stufenaufsatz PA	S 260 PA	2	0,6	
	S 300 PA	2	1,2	
	S 350 PA	5	1,5	
	S 420 PA	7	3	
	S 500 PA	7	4,4	
	K 300 VA	2	1	
	K 400 VA	10	3	
Warrally C. 1	K 500 VA	10	5	
Kegelaufsatz VA	K 650 VA	50	10	
VA	K 750 VA	50	15	
	K 900 VA	50	20	
	K 1000 VA	60	30	

2.6.6. Bestellhinweise – Bestellschlüssel

Antriebsrichtungen: Rechtslauf R im Uhrzeigersinn

Linkslauf L gegen Uhrzeigersinn

Standardfarben: RAL 7031

Schutzgrad: IP54

3. Inbetriebnahme

3.1. Einschalten des Wendelförderers

Die Inbetriebnahme des Wendelförderers darf nur von qualifizierten Personen unter Beachtung der Sicherheitshinweise durchgeführt werden.

Vor jeder Inbetriebnahme sind die Elektroanschlüsse, sowie Schnittstellen zu weiteren Maschinenbaugruppen einer Sichtprüfung zu unterziehen. Weiterhin ist darauf zu achten, dass sich keine Fremd- oder Falschteile im Wendelförderer befinden.

Zur Inbetriebnahme des Wendelförderers muss der Schalter am Steuergerät eingeschaltet und die gewünschte Geschwindigkeit einstellt werden. Ist der Wendelförderer in eine Montageanlage eingebunden, erfolgt die Herstellung der Stromversorgung meist zentral, von der Hauptsteuerung aus.

3.2. Bedienung während des Betriebes

Wenn der Wendelförderer in eine vollautomatisierte Maschine integriert ist, muss der Bediener während des Betriebes auf die Warn- bzw. Kontrollanzeigen achten. Weiterhin muss der Bediener sicherstellen, dass die erforderlichen Mindestfüllmengen im gegebenenfalls vorgeschalteten Bunker bzw. im Wendelförderer nicht unterschritten werden. Bei Wendelförderern, die in eine Montageanlage integriert sind, wird der Füllstand ggf. von einem Sensor überwacht. Wird die Mindestfüllmenge erreicht, meldet der Sensor dies an die Zentralsteuerung, die das weitere Vorgehen regelt.

Bei Wendelförderern die über keine Füllstandskontrolle verfügen, muss die Füllmenge manuell überwacht werden. Wann die Mindestfüllmenge erreicht wird, ist davon abhängig, wie die Abnahmerate der Zuführung/Maschine ausgelegt ist. Der Wendelförderer ist so entwickelt und justiert worden, dass er eine bestimmte Zuführtaktleistung erreicht. Um einen unterbrechungsfreien Lauf zu gewährleisten, muss der Bediener in regelmäßigen Intervallen nachfüllen. Wird der Zuführtakt vom Betreiber verändert, so verändern sich die Intervalle in denen der Wendelförderer nachgefüllt werden muss. Diese Intervalle sind vom Betreiber festzulegen!

3.3. Ausschalten des Wendelförderers

Das Ausschalten erfolgt über den Schalter am Steuergerät bzw. über die Hauptsteuerung der Maschine. Durch das Ausschalten der Maschine wird die Energiezufuhr unterbrochen.

Ausschalten durch Not- Aus

Der Wendelförderer besitzt keinen eigenen Not-Aus-Schlagschalter. Ist der Wendelförderer in eine Maschinensteuerung integriert, so wird bei einer Auslösung der Not-Aus-Einrichtung auch der Wendelförderer vom Versorgungsnetz getrennt.

4. Funktionsablauf

4.1. Wendelförderer- Zuführsystem mit Bunker (2 Stausensoren)

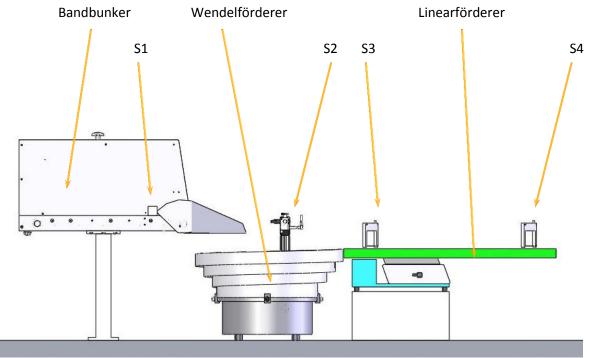


Bild 6: Zuführung mit Bandbunker, Wendelförderer und Linearförderer

Sensoren		Beschreibung
S1	Füllstand Bunker	fordert den Bediener auf, den Bunker nachzufüllen
S2	Füllstand Wendelförderer	steuert den Bunker an, um den Wendelförderer nachzufüllen
S3	Maximumstausensor	stoppt den Wendelförderer, um die Teile zu schonen
S4	Minimumstausensor	startet den Wendelförderer, um den Linearförderer wieder zu füllen

Der Bandbunker darf nur eingeschaltet werden, wenn auch der Wendelförderer läuft!

Der Wendelförderer darf nur eingeschaltet werden, wenn auch der Linearförderer läuft!

Der Wendelförderer wird bei Unterschreitung des Minimumstausensors und einer gewissen

Nachlaufzeit T_{Nmin} eingeschaltet und bei einem Signal am Maximumstausensor und einer entsprechenden

Nachlaufzeit T_{Nmax} ausgeschaltet.

4.2. Wendelförderer- Zuführsystem ohne Bunker (2 Stausensoren)

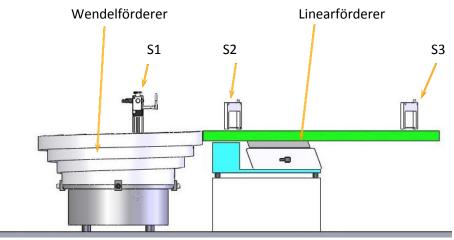


Bild 7: Zuführung mit Wendelförderer und Linearförderer

Sensoren		Beschreibung
S1	Füllstand Wendelförderer	fordert den Bediener auf, den Wendelförderer nachzufüllen
S2	Maximumstausensor	stoppt den Wendelförderer, um die Teile zu schonen
S3	Minimumstausensor	startet den Wendelförderer, um den Linearförderer wieder zu füllen

Der Wendelförderer darf nur eingeschaltet werden, wenn auch der Linearförderer läuft! Der Wendelförderer wird bei Unterschreitung des Minimumstausensors und einer gewissen Nachlaufzeit T_{Nmin} eingeschaltet und bei einem Signal am Maximumstausensor und einer entsprechenden Nachlaufzeit T_{Nmax} ausgeschaltet.

4.3. Wendelförderer- Zuführsystem ohne Bunker (1 Stausensor)

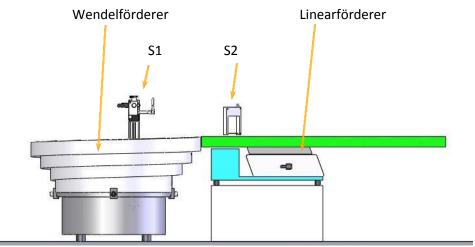


Bild 8: Zuführung mit Wendelförderer und Linearförderer

Sensoren		Beschreibung	
S1	Füllstand Wendelförderer	fordert den Bediener auf, den Wendelförderer nachzufüllen	
S2	Maximumstausensor	stoppt den Wendelförderer, um die Teile zu schonen; das Starten des Wendelförderers wird über ein Zeitfenster geregelt	

Der Wendelförderer darf nur eingeschaltet werden, wenn auch der Linearförderer läuft! Der Wendelförderer wird bei einem Signal am Maximumstausensor und einer entsprechenden Nachlaufzeit T_{Nmax} ausgeschaltet.

5. Hilfe bei Störungen und Fehlerbeseitigung

Beim Beseitigen von Störungen am Wendelförderer sind die Sicherheitshinweise (Kapitel 1) unbedingt zu beachten.

Unzureichende oder keine Förderleistung im Wendelförderer-Aufsatz kann mehrere Ursachen haben:

Ursache	Fehlerbeseitigung
Wendelförderer-Antrieb ist nicht waagerecht aufgestellt	Waagerechte Ausrichtung des Antriebes und des Wendelförderer-Aufsatzes
Wendelförderer-Aufsatz ist unzureichend auf dem Antrieb befestigt	Wendelförderer-Aufsatz mit dem entsprechenden Anzugsmoment auf dem Wendelförderer-Antrieb befestigen (siehe 2.6.3. Anzugsmomente, Magnetspalt)
Betrieb mit falscher Frequenz	Umschalten zwischen Voll- und Halbwelle (siehe BA Steuergeräte im Anhang)
Spannungsregelbereich ist nicht korrekt	Min-Max-Potentiometer nach dem Angaben im Steuergerät einstellen (siehe BA Steuergeräte im Anhang)
Veränderung des Luftspaltes zwischen Magnet und Anker	Einstellen eines gleichmäßigen Luftspaltes (siehe 2.6.3.Anzugsmomente, Magnetspalt)
Federn mit unterschiedlichen Anzugsmomenten befestigt	Anzugsmomente korrigieren (siehe 2.6.3.Anzugsmomente, Magnetspalt)
Federbruch	Austausch der gebrochenen Federn
Schwingmagnet defekt	Austausch des defekten Schwingmagneten

Bei größeren Störungen (veränderter Magnetspalt, Schwingmagnet defekt, Blattfeder gebrochen) ist es sinnvoll, sich mit der SIM Automation in Verbindung zu setzen, weil das Einstellen der Antriebe eine gewisse Erfahrung und entsprechende Messgeräte erfordert.

6. Wartung und Instandhaltung, Reinigung

Bei der Wartung und Instandhaltung des Wendelförderers sind die Sicherheitshinweise zu beachten, besonders die für die Wartungs- und Instandsetzungsarbeiten.

Anfallende Reparaturarbeiten dürfen nur von befugtem Fachpersonal durchgeführt werden. Dies gilt besonders bei Arbeiten an der Elektrik.

Zur Reinigung des Wendelförderers sind fusselfreie Baumwolllappen oder Papiertücher zu verwenden. Bei der Verwendung von chemischen Reinigungsmitteln sind die darauf aufgeführten Herstellerangaben bezüglich der Bedienersicherheit und Gesunderhaltung zu beachten.

Wendelfördereraufsätze aus Polyamid:

Synthetische Polyamide haben eine hohe Festigkeit, Steifigkeit und sehr gute chemische Beständigkeit. Außerdem haben sie einen hohen Verschleißwiderstand und gute Gleiteigenschaften. Zur Reinigung eigenen sich Industrie- und Haushaltsreiniger oder Wasser. Bei der Verwendung von Wasser in Verbindung mit Reinigungsmitteln, ist darauf zu achten, dass der Wendelfördereraufsatz nach der Reinigung mit einem trockenen, fusselfreien Tuch wieder getrocknet wird. Wird dies nicht getan, können aufgrund der Wasseraufnahmefähigkeit von Polyamid Maßabweichungen entstehen.

Wendelfördereraufsätze aus hochlegiertem Stahl/Edelstahl (X5CrNi18.10):

Dieser Werkstoff besteht aus Stahl mit 18% Chromzusatz und 10% Nickelzusatz. Er ist rostfrei, hitze- und säurebeständig. Jedoch wird die Korrosionsbeständigkeit von Chromnickelstahl durch Säuren und halogene Verbindungen (Chloride, Bromide, Jodide) verringert.

- Zur Reinigung keine Chlorlösungen verwenden.
- > Fremdrost verhüten (z.B. Eisenstaub)

Zur Reinigung von Edelstahl eignen sich alle Haushalts- und Industriereiniger (ohne Zusätze wie Chloride, Bromide, Jodide sowie keine Scheuermittel) und Wasser oder Seifenlauge.

Wendelfördereraufsätze mit Metaline Beschichtungen:

Metaline ist ein Polyurethan, es ist sehr verschleißfest, dauerelastisch und lebensmittelecht zusätzlich schütz es die Fläche vor Korrosion. In erster Linie dient es zur Lärmreduzierung.

Chemische Beständigkeit:

Phosphorsäure (85%) sehr gut
 Salzsäure (10%) gut
 Schwefelsäure (10%) gut
 Ozon sehr gut
 Benzin/Kerosin gut
 Aliphatischer Kohlenwasserstoff sehr gut

Mit Metaline ausgespritzte Oberflächen können mit warmen Wasser und Seifenlauge gereinigt werden. Ebenso können alle wasserlöslichen handelsüblichen Haushalts- und Industriereiniger eingesetzt werden. Der Einsatz von Reinigungsmitteln mit alkoholischen Bestandteilen sollte auf Grund der entstehenden Gefahren und der Beeinflussung der Gleiteigenschaften der Oberfläche vermieden werden.

Wendelfördereraufsätze mit Bürstenbelag und Filz:

Der Bürstenbelag dient in erster Linie zur Verbesserung der Fördereigenschaften sowie zur Reduzierung der Geräuschentwicklung. Diese Oberflächen müssen gründlich von Staub und Verunreinigungen, mittels eines Staubsaugers, befreit werden.

Oberflächen aus Stahl und Aluminium:

Alle Oberflächen aus Aluminium und behandelte Stahloberflächen sind mit handelsüblichen Haushaltsoder Industriereinigern (ohne Zusätze wie Chloride, Bromide, Jodide) zu reinigen.

Murtfeldt "S" grün/schwarz/natur:

Murtfeldt "S" ist ein Niederdruckpolyethylen. Es ist verschleißfest, lärmreduzierend, lebensmittelrechtlich zugelassen, besitzt sehr gute Gleiteigenschaften, ist nahezu wartungsfrei und antistatisch (nur Murtfeldt "S" schwarz). Murtfeldt "S" besitzt eine gute Chemikalienbeständigkeit, d. h. es ist kein weiterer Oberflächenschutz notwendig. Zur Reinigung von Murtfeldt "S" eignet sich warmes Wasser und Seifenlauge. Bei hartnäckigen Verschmutzungen können auch Haushalts- und Industriereiniger eingesetzt werden.

Sensorik:

Bei der Reinigung der Sensoren ist höchste Sorgfalt geboten. Die Sensorik Bauteile sind vorsichtig mit einem trockenen Baumwolltuch oder Papiertuch von Staub und Verunreinigungen zu befreien.

7. Hinweise für den Transport

Für den Transport sind die im Abschnitt Sicherheitshinweise aufgeführten Bestimmungen und die **Transport-Checkliste** unbedingt zu beachten.

7.1. Transport

Vor dem Transport sind alle frei beweglichen Teile mit einer Transportsicherung zu versehen.

Des Weiteren ist darauf zu achten, dass alle Versorgungsleitungen gesichert sind.

Der Transport, insbesondere das Heben des Wendelförderers, darf nur an der Gegenmasse bzw. an den dafür vorgesehenen Lastaufnahmemitteln (Transportösen)erfolgen. Der Versand hat so zu erfolgen, dass ein Verrutschen nicht möglich ist.

Beim Transport ist darauf zu achten, dass der Wendelförderer nicht beschädigt wird. Es ist darauf zu achten, dass ausreichend Abstand zu nebenstehenden Einrichtungen (z.B. Laderaumwänden, anderes Transportgut) eingehalten wird.

Alle Transportsicherungen sind so auszulegen und anzubringen, dass sie den entstehenden Belastungen standhalten.

Die Transportsicherungsbauteile und Transportmittel müssen so angebracht werden, dass Versorgungsleitungen und Maschinenelemente nicht beschädigt werden.

Die Transportsicherungsbauteile und Transportmittel müssen so angebracht werden, dass Versorgungsleitungen und Maschinenelemente nicht beschädigt werden.

Bild 9: Transportöse zum Heben des Wendelförderers

Das Heben der Antriebe SF 300; SF 500; und SF 800 erfolgt am Transportösen. Dieser muss vor dem Transport in der Mitte des Wendelförder-Antriebes auf den Distanzbolzen geschraubt werden!

Transport-Checkliste:

- > Alle Versorgungs- und Entsorgungsanschlüsse sind getrennt
- > Wendelfördereraufsatz fest mit Antrieb verbunden
- Palette/Kiste in ausreichender Größe
- Hervorstehende Teile sind mit Luftpolsterfolie geschützt
- > Wendelförderer ragt nicht über Palettenrand heraus
- Wendelförderer durch Folienverpackung vor Nässe geschützt
- Anhebepunkte markiert, falls notwendig
- Warnhinweise auf Verpackung/Folie angebracht
- Dokumentation liegt der Anlage bei

7.2. Lagerung

Vor dem Lagern des Wendelförderers bzw. dem Transport zum Bestimmungsort sind blanke Maschinenteile, die nicht aus korrosionsbeständigem Material sind, mit Korrosionsschutzmittel zu versehen. Außerdem muss der Wendelförderer vor Nässe geschützt werden. Ein sicherer Stand ist zu gewährleisten.

Die Versorgungsanschlüsse sind zu trennen, sodass ein unbeabsichtigtes Einschalten nicht möglich ist.

8. Hinweise für Aufstellung und Justage

8.1. Wendelförderer entgegen nehmen / auspacken

Beim Empfang des Wendelförderers ist dieser umgehend auf Transportschäden zu überprüfen. Festgestellte Beschädigungen sind sofort dem Lieferanten zu melden, um eventuelle Regress und Versicherungsansprüche geltend machen zu können.

Beim Auspacken des Wendelförderers ist mit höchster Vorsicht und Sorgfalt zu arbeiten.

Dem Wendelfördereraufsatz liegt eine Beschreibung bei, mit Vorschriften wie die Transportsicherungen zu entfernen und welche Einstellungen vorzunehmen sind.

Diese Vorschriften sind unbedingt einzuhalten.

Checkliste zur Entgegennahme des Wendelförderers:

- Die gelieferte Anlage ist bereits vor dem Auspacken auf eventuelle Transportschäden zu überprüfen! Bei Feststellung eines Schadens ist die Firma SIM Automation sofort zu informieren!
- Beim Auspacken (insbesondere mit scharfen Gegenständen) ist darauf zu achten, dass jegliche Maschinenteile, vor allem Schläuche und Kabel, nicht beschädigt werden!
- Nochmals auf Transportschäden prüfen!
- Falls die Anlage Transportsicherungen besitzt, befinden sich Hinweise dazu an den entsprechenden Teilen. Diese sind zu befolgen, um die Transportsicherungen ordnungsgemäß zu entfernen!

8.2. Montage, Aufstellung und Justage

Aufstell- und Montagearbeiten sind nur von autorisiertem und qualifiziertem Personal durchzuführen.

Der Wendelförderer-Antrieb besitzt 3 oder 4 Gummipuffer, welche von unten mit dem Unterbau verschraubt werden. Teilkreisgröße, Anzahl und Gewinde sind aus der Tabelle im Kapitel 2.6.2. Technische Parameter zu entnehmen. Besser ist es, den Wendelförderer-Antrieb über Laschen oder Nivellierelemente zu befestigen. Diese Zubehörteile sind bei der SIM Automation erhältlich.

Der Wendelförderer-Aufsatz wird über Randklemmungen oder eine Zentralbefestigung mit dem Antrieb verbunden. Dabei sind die angegebenen Anzugsmomente gemäß Kapitel 2.6.3. Anzugsmomente, Magnetspalt zu beachten!

Zu nachfolgenden Maschinenbaugruppen (Linearstrecken, Vereinzelungen, Kopfstücken ...) sollte ein Mindestabstand zum Auslauf des Wendelförderer-Aufsatzes von 0,5 ... 2,0 mm, bei sehr großen Schwingwegen und Teilen bis 5,0 mm, eingehalten werden

Sortierungen mit Blasluft benötigen ungeölte, gefilterte Luft mit einem Druck von 5 bar.

8.3. Elektroinstallation

Der Elektroanschluss darf nur von autorisiertem, qualifiziertem und erfahrenen Personal gemäß VDE und nach den geltenden Vorschriften vorgenommen werden. Alle Motor- bzw. Schaltrelaisanschlüsse sind werksseitig auf Stecker gelegt. Ebenso ist das Gerät bereits geerdet. Auf ausreichenden Zuleitungsquerschnitt ist zu achten. Das Anschlusskabel muss einen ordnungsgemäß angeschlossenen Schutzleiter aufweisen.

Vorzugsweise sollten die Wendelförderer mit den Steuergeräten der SIM Automation betrieben werden. In diesem Fall ist der Regelbereich im Steuergerät über Min-Max Potentiometer voreingestellt. Die Einstellwerte sind im Steuergerät hinterlegt. Ergeben sich durch die Einbaubedingungen Änderungen der Einstellwerte, so ist nach der Betriebsanleitung der Steuergeräte zu verfahren.

Steuergerät / Frequenzumrichter					
Тур	Artikel- Nummer	Eingangs- spannung	Ausgangs- spannung	Netz- frequenz	Bemerkung
RGF-8	1003767	230 V	0-200 V	50 Hz	mit Freigabeeingang
RGFZ-8	1003591	230 V	0-200 V	50 HZ	mit Freigabeeingang und zusätzlicher Zeitsteuerung für Stauabschaltung
RGF-8/1	1010436	115 V	0-105V	60 HZ	mit Freigabeeingang
RGFZ-8/1	1288859	115 V	0-105V	60 HZ	mit Freigabeeingang und zusätzlicher Zeitsteuerung für Stauabschaltung
EWR-8	1061510	230 V 115 V	30-200V	50 Hz 60 Hz	Einschub
WR-8	1307204	230 V 115 V	30-200V	50 Hz 60 Hz	auf Basis EWR-8 (im Gehäuse, mit Stecker)
ERGF-1	17394	230 V	0-215 V	50 Hz	Einschub Frontblendenbreite 8TE
ERGF-1/1	17951	115 V	0-105 V	60 Hz	Einschub Frontblendenbreite 8TE
ERGF-1-7TE	1016121	230 V	0-215 V	50 Hz	Einschub Frontblendenbreite 7TE
ERGF-1/1-7TE	1010486	115 V	0-105 V	60 Hz	Einschub Frontblendenbreite 7TE

9. Außerbetriebnahme, Entsorgung

Der Wendelförderer ist fachgerecht durch spezialisiertes Fachpersonal zu demontieren und zu entsorgen! Die aktuell gültigen gesetzlichen und betrieblichen Bestimmungen sind zu berücksichtigen!

Zuerst ist der Wendelförderer bzw. die gesamte Maschine spannungsfrei zu schalten und danach die Versorgungsleitung zu trennen!

Die Entsorgung aller Teile des Wendelförderers hat so zu erfolgen, dass Gesundheitsund Umweltschäden ausgeschlossen sind!

Eingesetzte Materialien bei Wendelförderern und Steuergeräten

Überwiegend eingesetzte Materialien					
Nr.	Material	Einsatzort			
1	Stahl	Maschinenbauelemente			
2	Aluminium	Maschinenbauelemente			
3	Kupfer	Kabel, Schwingmagnete			
4	Verzinktes Stahlblech	Klemmkästen			
5	Kunststoff, Gummi, PVC	Verkleidungen, Dichtungen, Schläuche, Kabel, Scheiben			
6	Zinn	Platinen			
7	Polyester	Platinen			
Mate	Materialien die gesondert entsorgt werden müssen				
Nr.	Material	Einsatzort			
1	Elektroschrott	Elektrische Versorgung,			
		Platinen mit elektronischen Bauteilen			

10. Zubehör Wendelförderer

Füllstandskontrollen	kapazitiv, optisch, mechanisch, Ultraschall
Schallschutzverkleidungen	mit transparenten, klappbaren Deckeln (Minderung des Lärmpegels um mind. 10dB (A)
Ständer	mit Spindel (Höhenverstellung)
Auskleidung des Wendelförderaufsatzes	für teileschonenden Transport und Optimierung der Fördereigenschaften (wahlweise: Polyurethan, Bürstenbelag, Filz)
Sonderzubehör	Klappe zur Schnellentleerung des Wendelförderaufsatzes
Steuergeräte	Im Aufbaugehäuse aus Aluminium Druckguss oder als 19" Einschub (mit diversen Zusatzfunktionen und Anschlüssen)
Laschen	für Befestigung des Wendelförderers von oben
Nivellierelemente	für Höheneinstellung (niedrig, mittel, hoch)

11. Ersatzteile – Verschleißteile

11.1. Bestellhinweise

Bei der Bestellung von Ersatz- und Verschleißteilen bitte immer *Typ* und *Serien-Nr.* angeben. Siehe Maschinenschild an der Gegenmasse oder auf der Antriebsverkleidung.

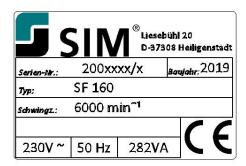
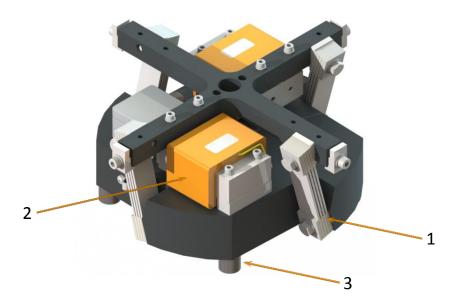



Bild 16: Maschinenschild

11.2. Ersatz- und Verschleißteilliste

Angaben des Herstellers/ Lieferanten			Angaben des Anwenders		
Pos.	Menge	Einheit	Benennung	Bemerkung	Bestellmenge
1		Stück	Feder		
2		Stück	Schwingmagnet		
3		Stück	Gummipuffer		

12. Anlagen

- Bedienungsanleitung Steuergerät RGF / RGFZ / WR-8 / EWR-8 / ERGF

Contents

1.	Safety instructions	34
1.1.	General, symbols and instructions	34
1.2.	Fundamental safety instructions	34
1.3.	Safety instructions for the intended use of the helical conveyor	35
1.4.	Owner's duty to care	35
1.5.	Selection and qualification of personnel; general duties	36
1.6.	Safety instructions for particular service situations	36
1.6.1.	Start-up	36
1.6.2.	Normal operation	37
1.6.3.	Maintenance and repair work	37
1.7.	Special hazards	38
1.7.1.	Danger from electric current	38
1.7.2.	Danger from electric current	39
2.	Device – product description	40
2.1.	Use for intended purpose	40
2.2.	Warning of wrong use	40
2.3.	Definition run direction	40
2.4.	Functional description	41
2.5.	Basic construction	41
2.6.	Technical specifications	42
2.6.1.	Overview: Helical conveyor vibratory drives	42
2.6.2.	Technical parameters	43
2.6.3.	Tightening torques, magnet gap	44
2.6.4.	Helical conveyor combinations: Product range 2019	44
2.6.5.	Filling quantity helical conveyor top	45
2.6.6.	Order information	46
3.	Start-up	47
3.1.	Turning on the helical conveyor	47
3.2.	Operation while the helical conveyor is running	47
3.3.	Turning off the helical conveyor	47
4.	Functional description (typical use)	48
4.1.	Helical conveyor system with bunker (2 build back sensors)	48
4.2.	Helical conveyor system without bunker (2 build back sensors)	49
4.3.	Helical conveyor system without bunker (1 build back sensor)	50
5.	Troubleshooting and remedies	51

6.	Maintenance and repairs, cleaning	52
7.	Instructions for transportation	53
7.1.	Transportation	53
7.2.	Storage	54
8.	Installation and adjustment	55
8.1.	Taking the helical conveyor out of the transport crate / unpacking	55
8.2.	Assembly, installation and setting up	55
8.3.	Electrical installation	56
9.	Shutting down, disposal	57
10.	Helical conveyor accessories	57
11.	Spares parts – quickly wearing parts	58
11.1.	Order details	58
11.2.	List of parts subject to quick wear and tear	58
12.	Annexes	58

Revision: 1.6

1. Safety instructions

1.1. General, symbols and instructions

The following Operation Instructions contain concrete safety instructions to alert the user to remaining risks when operating the helical conveyor.

The following symbols in these operating instructions draw the reader's attention to the safety instructions.

Danger

This symbol indicates danger of severe accident, including death, and other serious health damage. These instructions must be observed under any circumstances.

Danger due to high electric voltage

This symbol indicates danger of severe accident, including death, due to electricity. These instructions must be observed under any circumstances.

Caution: Danger for the machine and the environment

This symbol indicates danger to the machine, material or the environment.

The symbol cannot replace the textual instruction.

Therefore, always read the full text. Knowledge of these operation instructions and the warnings and safety instructions is a fundamental precondition for handling the helical conveyor.

1.2. Fundamental safety instructions

The helical conveyor has been designed and built to reflect the state of the art, good engineering practice and all applicable regulations of safety and industrial health. Improper use of the helical conveyor can cause injury, including death, of the user or other persons or damage to the helical conveyor and other assets. These operation instructions contain essential safety instructions for the safe use of the helical conveyor.

The operating instructions must always be available for reference at the place where the helical conveyor is installed. All operators are obliged to read the operation instructions before starting work at the helical conveyor.

In particular, all persons not working regularly at the helical conveyor, for example, repair and maintenance personnel, should be familiar with the operation instructions. These operation instructions should be complemented with general and local instructions for accident prevention, the health and safety act, the equipment use ordinance and the environmental protection ordinances and these documents observed.

All safety alerts and instruction labels at the helical conveyor should always be in good state and legible. Damaged or illegible labels should be replaced without delay.

1.3. Safety instructions for the intended use of the helical conveyor

The helical conveyor must only be used in good technical state, for the intended purpose, in compliance with all safety and health instructions and in accordance with the technical documentation, in particular, these operating instructions (chapter Intended uses).

In addition, the general and site-specific regulations (e.g., laws, regulations, guidelines, norms, accident prevention and fire prevention rules, in house-regulations, etc.) must be observed.

Any other or additional use of the helical conveyor is not intended and is therefore forbidden. Any danger of accident or death or risk of damage to the helical conveyor or other assets is not the manufacturer's or supplier's responsibility. The risk in this case is alone on the owner.

In addition, the warranty granted by the manufacturer for the helical conveyor is voided.

The helical conveyor must not be operated:

- in a moist or wet environment
- > at temperatures below 5°C or above 45°C
- in a potentially explosive or easily flammable environment

1.4. Owner's duty to care

The owner should ensure that these operation instructions are always legible, complete and on hand at the helical conveyor.

The owner is obliged to regularly instruct all persons working at the helical conveyor in the fundamental directives on health and safety, accident prevention and environmental protection. The owner should also ensure that these persons are familiar with the operation instructions and in particular with all warnings and safety instructions.

The owner should make sure, in particular, that the helical conveyor is operated only in good technical state and, in particular, that all guards and other safety equipment are checked for function regularly, required personal protection equipment is available for and used by all operators, maintenance and repair personnel. These operating instructions should be complemented with general, legal and other obligatory rules for accident prevention.

Revision: 1.6

No foreign objects or materials must remain within the operating space of the helical conveyor.

1.5. Selection and qualification of personnel; general duties

Only trained or instructed and reliable personnel should operate the helical conveyor. The tasks and duties of persons for transport, commissioning, operation, maintenance, repair, shutting down and disposal should be defined clearly. Make sure that only authorized personnel work at the helical conveyor.

Qualified persons are:

- Machine planners and designers having the ability of operating the helical conveyor.
- Operators who have read and understood these operating instructions, been trained at the helical conveyor and have the necessary skills of operating the helical conveyor.
- Commissioning and service personnel trained at the press unit and authorized and able to commission and repair helical conveyors in accordance with the applicable safety standards.

All persons working at the helical conveyor should have read these operation instructions and confirm by their signature that they have understood all instructions. Trainee operators should work at the helical conveyor under the supervision of an experienced person. The completed and successful instruction should be documented in writing. The mandatory minimum age of all persons must be observed.

Work at the electrical equipment of the helical conveyor must only be carried out by a trained electrician or instructed persons under the management and supervision of a trained electrician in accordance with the rules of the trade.

All controls, guards and other safety equipment should only be operated by instructed persons.

Do not wear your hair open, do not wear loose clothes, rings or other pieces of jewelry. There is risk of injury due to getting caught or pulling.

1.6. Safety instructions for particular service situations

1.6.1. Start-up

The helical conveyor shall only be started by qualified personnel observing all safety instructions.

All operators shall have familiarized themselves sufficiently with:

- these operation instructions and the warnings and safety instructions
- all controls of the helical conveyor,
- the operation of the helical conveyor,
- the immediate environment of the helical conveyor,
- measures to be taken in an emergency.

1.6.2. Normal operation

The helical conveyor must only be used in good technical state, for the intended purpose, in compliance with all safety and health instructions and in accordance with the technical documentation, in particular, these operating instructions. Any unsafe practice should be avoided.

Make sure before turning on / starting the helical conveyor that no persons at or near the press can be injured by the helical conveyor.

All objects and materials not required for the operation of the helical conveyor should be removed from the working area of the machine.

If any guard or safety device of the helical conveyor is changed or the helical conveyor does not work normally turn it off without delay, secure it and inform the responsible supervisor. Other than normal operation (e.g., higher power consumption, temperatures or vibrations, unusual noise or smell) indicates that the helical conveyor is not working normally.

If in doubt, stop the helical conveyor without delay.

1.6.3. Maintenance and repair work

To avoid failure in production, it is necessary to have the prescribed maintenance and repair work carried out by authorized personnel at the defined intervals.

For work in connection with maintenance, repair or work preparation, all applicable instructions and accident prevention instructions should be observed. Moving machine parts can cause injury.

The operators must be informed before any maintenance or repair is carried out at the helical conveyor. It may be necessary to fence off a wide area around the helical conveyor.

If the helical conveyor is turned off, secure it against accidental or unauthorized starting. Secure all controls accordingly.

If the helical conveyor must be opened for maintenance or repair, the power supply to the machine should be disconnected.

It should be ensured that the power supply to the helical conveyor which is not necessary for maintenance or repair cannot be restored.

When a large helical conveyor component is dismantled, suitable lifting tools should be used to which the bunker or component can be attached securely. Use only lifting devices in good technical state and suitable for the weight to be lifted. Stay out from and do not work under suspended loads. Only experienced personnel should be allowed to attach loads to lifting devices and guide crane drivers. The guide must be in sight of the operator or have voice communication with him.

Only original parts should be used because only these parts comply with all technical requirements made by the manufacturer.

Unauthorized changes to the helical conveyor void the safety concept, the EC declaration of conformity EC declaration of incorporation of the helical conveyor.

Use only lint free cloth and no aggressive cleaner for cleaning the helical conveyor.

1.7. Special hazards

1.7.1. Danger from electric current

Work at components conducting electricity must only be carried out by trained and authorized personnel.

Electrical hazards due to:

Electrical contact (direct or indirect), electrostatic charge,
Heat radiation or processes, such as ejection of molten material,
Chemical processes during short-circuits, overload, etc.,
External impact on electrical equipment, electromagnetic compatibility,

Sparks, ignition:

Danger area: Electrical installation

Precautions: Use electrical equipment designed according to EN 60204 (VDE0113) and VBG 4

Work at electrical equipment only be authorized technical personnel

Instruction of operators

Remaining hazard: During setting and maintenance work

The EMC regulations were considered during the assembly of the feeding unit.

Protection when using control equipment:

The mains breaker of the different control units (RGF..., RGFZ) separately disconnects neutral and phase from the output.

With the drawer units (ERGF...), the mains breaker disconnects only the phase to the output. Drawer units must only be installed in housings with the appropriate degree of protection according to VDE.

All drawer units and devices listed above are without system decoupler at the output, in each case the phase is controlled by the controller.

It is absolutely required to make the system connection (PE, L1, N) according to VDE and other applicable provisions so that the conductors (PE, L1, N) cannot be reversed by flexible cables.

If there is risk of fault current, e.g., due to chafing or squeezing of cables, it is necessary to install an r.c.b.o. device in the line to the device.

1.7.2. Danger from electric current

The oscillation magnets installed in the helical conveyor are designed and built according to DIN VDE 0580. Therefore, they are state of the art and comply with the requirements for electrical devices in every respect. Consequently human beings or data volumes are not in danger.

The oscillation magnets must not be connected unless as specified on the nameplate. The magnets must be connected by trained and authorized personnel.

Wrong handling of the product in connection with the installation or connection can cause loud noise, strong vibrations, tension and heating.

Take the usual precautions for magnetic components to protect from stray and magnetic field.

2. Device – product description

2.1. Use for intended purpose

The only purpose of the helical conveyor is to sort and provide, in orderly fashion, volumes of small items for a downstream feeder/machine.

The helical conveyor has been designed to function correctly and safely only in combination with the respective production feeder / machine.

Any other or different use is forbidden. The technical documentation, in particular, the operation instructions and the safety instructions, should be observed.

In addition, the general and site-specific regulations, e.g., laws, regulations, guidelines, DIN or other national norms, accident prevention regulations, fire prevention regulations, operation instructions, etc.) apply.

If the operation instructions of the helical conveyor are ignored, all warranty claims are forfeited. Damage caused due to failure to observe the above instructions will not be accepted by the manufacturer. The owner of the helical conveyor alone is responsible for any such damage.

2.2. Warning of wrong use

By accident, the helical conveyor of the bottom part conveyor can be filled with the wrong type of bushing. If wrong parts have been filled, stop the helical conveyor and remove all parts manually from the bottom parts conveyor

2.3. Definition run direction

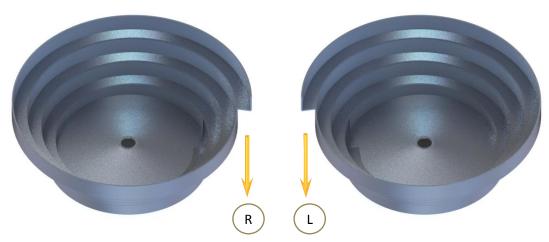


Figure 1: clockwise rotation

Figure. 2: counterclockwise rotation

2.4. Functional description

The helical conveyor drive consists of the connection plate (1) and the counterweight (3). Both are coupled by spring packs (2). Oscillation magnet (4) causes the system of spring and weight to vibrate.

Rubber buffers (6) prevent transmission of the vibrations to the machine frame. The top mount (7) of the helical conveyor can easily be disconnected from the drive by edge connectors or a central fastening mechanism.

Figure 3 shows the helical conveyor drive type SF 300. The other drives are of similar design but of different size.

2.5. Basic construction

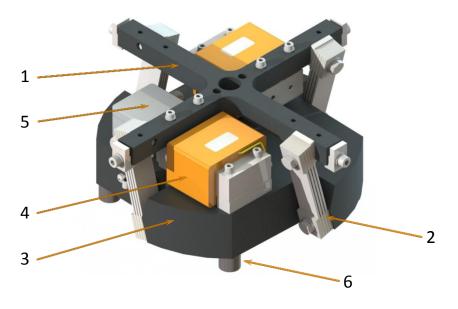


Figure 3: helical conveyor drive

- 1. Connecting plate or cross
- 2. Spring unit
- 3. Counterweight
- 4. Helical conveyor magnets (Oscillation magnets)
- 5. Power supply
- 6. Rubber puffer
- 7. Helical conveyor top mount

Figure 4: helical conveyor drive with top mount

2.6. Technical specifications

2.6.1. Overview: Helical conveyor vibratory drives

	Article No	Designation	Drawing-no.	Voltage	
	1311451	SF110L1V115	2-00680-2100	115V	
Helical conveyor	1311456	SF110R1V115	2-00681-2100	1134	
SF110	1312252	SF110L1V230	2-00680-3100	230V	
	1312255	SF110R1V230	2-00681-3100	2300	
	1311714	SF150L2V115	2-00682-2100	115)/	
Helical conveyor	1311725	SF150R2V115	2-00683-2100	115V	
SF150	1311736	SF150L2V230	2-00682-3100	2201/	
	1311746	SF150R2V230	2-00683-3100	230V	
	1311784	SF160L1V115	2-00684-2100	115V	
Helical conveyor	1311812	SF160R1V115	2-00685-2100	1134	
SF160	1312362	SF160L1V230	2-00684-3100	230V	
	1312365	SF160R1V230	2-00685-3100	2300	
	1312267	SF220L2V115	2-00686-2100	115V	
Helical conveyor	1312269	SF220R2V115	2-00687-2100	1134	
SF220	1312268	SF220L2V230	2-00686-3100	230V	
	1312270	SF220R2V230	2-00687-3100	2300	
	1312287	SF300L2V115	2-00688-2100		
	1312288	SF300L2H115	2-00688-2200	445)/	
	1312295	SF300R2V115	2-00689-2100	115V	
Helical conveyor	1312296	SF300R2H115	2-00689-2200	l	
SF300	1312291	SF300L2V230	2-00688-3100		
	1312293	SF300L2H230	2-00688-3200	2201/	
	1312297	SF300R2V230	2-00689-3100	230V	
	1312298	SF300R2H230	2-00689-3200		
	1312435	SF500L2V115	2-00690-2100		
	1312436	SF500L2H115	2-00690-2200	115V	
	1312450	SF500R2V115	2-00691-2100	1134	
	1312453	SF500R2H115	2-00691-2200		
	1312437	SF500L2V230	2-00690-3100		
Helical conveyor	1312438	SF500L2H230	2-00690-3200		
SF500	1312439	SF500L4V230	2-00690-3300]	
	1312440	SF500L4H230	2-00690-3400	230V	
	1312455	SF500R2V230	2-00691-3100	230 v	
	1312461	SF500R2H230	2-00691-3200]	
	1312467	SF500R4V230	2-00691-3300]	
	1312469	SF500R4H230	2-00691-3400		
Helical conveyor	1312502	SF800L4H230	2-00692-3100	2201/	
SF800	1312505	SF800R4H230	2-00693-3100	230V	

2.6.2. Technical parameters

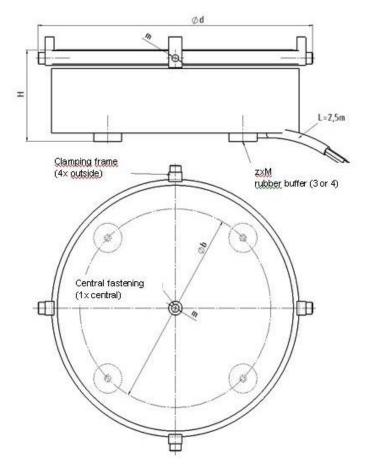


Figure 5: Dimensions of the helical conveyor

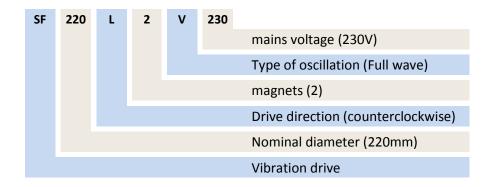
Drive	Ød [mm]	H [mm]	z x M	Øb [mm]	weight [kg]	number of	current at 2	-	current at 1		spring angle	Connection top
	,			,		magnet	50 Hz	100 Hz	60 Hz	120 Hz		
SF 110	110	105	4xM4	84	4	1		0,3		0,6	20°	central
SF 150	150	70	4xM4	127	4	1		0,2		0,2	16°	central
SF 160	165	156	3xM6	130	12	1		1,3		2,5	22°	central
SF 220	220	78	4xM6	170	12	2		0,6		0,6	16°	central
SF 300	312	152	4xM6	266	35	2/(4)	2,8	2,5	3,0	3,0	15°	outside
SF 500	520	238	4xM10	445	150	2/ (4)	8,0	8,0	8,0	8,0	18°	outside
SF 800	800	252	4xM16	905	440	2/ (4)	8,0		8,0		18°	outside

2.6.3. Tightening torques, magnet gap

Drive	Tightening torque Spring unit [Nm]	Tightening torque top mount [Nm]	Magnet gap [mm]
SF 110	8	10	0,30,4
SF 150	9	30	0,5
SF 160	30	30	0,4
SF 220	11	30	0,40,5
SF 300	60	30	0,51,5
SF 500	120	100	0,51,5
SF 800	120	100	1,6

2.6.4. Helical conveyor combinations: Product range 2019

Duting		Тор	
Drive	Cylinder top	Step top	Cone top
SF 110		S 120 PA	
3F 110		S 160 PA	
SF 150	Z 175 VA	S 160 PA	
3F 130		S 200 PA	
	Z 175 VA	S 200 PA	K 300 VA
	Z 200 VA	S 220 PA	
SF 160	Z 250 VA	S 260 PA	
		S 280 VA	
		S 300 PA	
	Z 250 VA	S 260 PA	K 300 VA
SF 220		S 280 VA	
		S 300 PA	
	Z 330 VA	S 350 PA	K 400 VA
		S 420 PA	K 500 VA
SF 300		S 420 VA	
		S 500 PA	
		S 500 VA	
	Z 500 VA	S 650 VA	K 650 VA
SF 500		S 750 VA	K 750 VA
		S 850 VA	K 900 VA
SF 800		S 1200 VA	K 1000 VA



2.6.5. Filling quantity helical conveyor top

_		Filling o	juantity
1	ор	weight [kg]	volume [L]
	Z 175 VA	0,5	0,5
	Z 200 VA	0,5	0,8
Cylinder top VA	Z 250 VA	0,5	1,1
VA.	Z 330 VA	10	4
	Z 500 VA	50	10
	S 280 VA	2	1,2
	S 420 VA	10	5
	S 500 VA	10	7
Step top VA	S 650 VA	50	12
VA	S 750 VA	50	24
	S 850 VA	50	30
	S 1200 VA	80	100
	S 120 PA	0,1	0,1
	S 160 PA	0,5	0,1
	S 200 PA	0,5	0,2
_	S 220 PA	0,5	0,2
Step top PA	S 260 PA	2	0,6
16	S 300 PA	2	1,2
	S 350 PA	5	1,5
	S 420 PA	7	3
	S 500 PA	7	4,4
	K 300 VA	2	1
	K 400 VA	10	3
	K 500 VA	10	5
Cone top VA	K 650 VA	50	10
VA	K 750 VA	50	15
	K 900 VA	50	20
	K 1000 VA	60	30

2.6.6. Order information

Drive directions: Clockwise rotation R clockwise

Counter clockwise rotation L counterclockwise

Standard finish: RAL 7031

Degree of protection: IP54

3. Start-up

3.1. Turning on the helical conveyor

The helical conveyor should only be started by qualified personnel observing all safety instructions.

Every time before the helical conveyor is turned on, make a visual inspection of all electrical and interfaces to other machine components. Make sure that no foreign material or wrong parts enter the helical conveyor.

Switch on the control unit and set the required speed.

If the helical conveyor is integrated in an assembly system, power is mostly supplied from the central control.

3.2. Operation while the helical conveyor is running

If the helical conveyor is integrated in an automatic machine, the operator should watch all controls and indicators when the machine is running. The operator should also ensure that the required minimum stock of parts is maintained in the bunker and the helical conveyor.

The bunker level of a helical conveyor that is integrated in an assembly system is possibly monitored by sensor. If the minimum stock drops to minimum, the sensor sends a signal to the central controller, which responds accordingly.

The filling level must be watched by the operator if the helical conveyor has no automatic level control. The time at which the stock is minimum depends on the rate at which parts are withdrawn by the feeding unit/machine. The helical conveyor has been designed to work at a certain feeding rate. To ensure continuity of operation, the operator should replenish the stock of parts in regular intervals. If the feeding rate is changed by the operator, the intervals at which the stock of parts in the helical conveyor must be replenished also change. These intervals should be defined by the owner of the helical conveyor.

3.3. Turning off the helical conveyor

As a rule, the helical conveyor is turned off by the main control of the machine. Turning off stops all energy supply to the machine.

Emergency stop

The helical conveyor does not have a separate emergency stop button. If the helical conveyor is incorporated in a machine control, it will be separated from the power supply when the machine is emergency stopped.

4. Functional description (typical use)

4.1. Helical conveyor system with bunker (2 build back sensors)

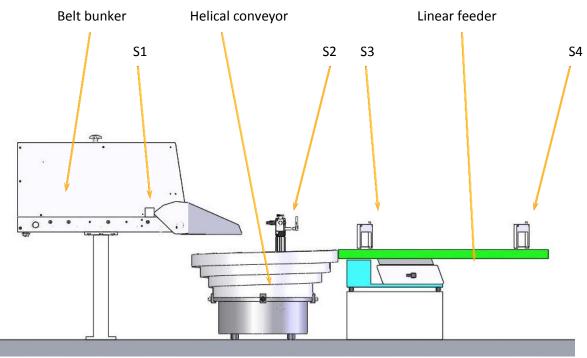


Figure 6: Feeder with belt bunker, helical conveyor and linear feeder

Sensors		Description
S1	Level in bunker	requests the operator to replenish the bunker stock
S2	Level in helical conveyor	actuates the bunker so that the helical conveyor stock is replenished
S3	Maximum build-back sensor	stops the helical conveyor to conserve the parts
S4	Minimum build-back sensor	starts the helical conveyor to fill the linear conveyor

The bunker must not be turned on unless the helical conveyor is also running.

The helical conveyor must not be turned on unless the linear feeder is also running.

The helical conveyor is turned on after a certain time T_{Nmin} if the level is below the minimum build-back sensor and is turned off after a certain time T_{Nmax} when a signal is received by the maximum build-back sensor.

4.2. Helical conveyor system without bunker (2 build back sensors)

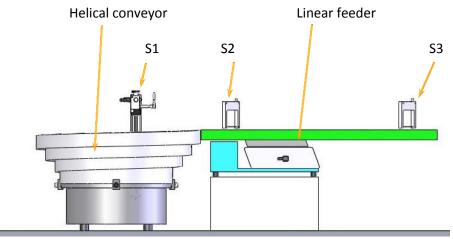


Figure 7: Feeder with helical conveyor and linear feeder

Sensors		Description
S1	Level in helical conveyor	requests the operator, to replenish the helical conveyor stock
S2	Maximum build-back sensor	stops the helical conveyor to conserve the parts
S3	Minimum build-back sensor	starts the helical conveyor to fill the linear conveyor

The helical conveyor must not be turned on unless the linear feeder is also running.

The helical conveyor is turned on after a certain time T_{Nmin} if the level is below the minimum build-back sensor and is turned off after a certain time T_{Nmax} when a signal is received by the maximum build-back sensor.

4.3. Helical conveyor system without bunker (1 build back sensor)

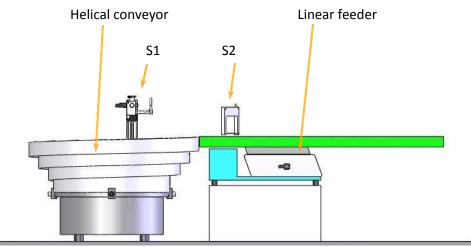


Figure 8: Feeder with helical conveyor and linear feeder

Sensors		Description
S1	Level in helical conveyor	requests the operator, to replenish the helical conveyor stock
S2	Maximum build-back sensor	stops the helical conveyor to conserve the parts; starts the helical conveyor to time frame controlled

The helical conveyor must not be turned on unless the linear feeder is also running. The helical conveyor is switched off when there is a signal at the maximum accumulation sensor and a corresponding overrun time T_{Nmax} .

5. Troubleshooting and remedies

For troubleshooting and remedial action at the helical conveyor ensure that the safety instructions (chapter 1) are observed.

Poor or no feeding in the helical conveyor can have several causes:

Cause	Remedy
Helical conveyor drive is not set up horizontally	Set up the helical conveyor drive and top mount horizontally
Slack fastening of the helical conveyor top mount on the drive	Install the helical conveyor top mount on the helical conveyor drive with the required torque (see 2.6.4 Tightening torques, magnet gap
Use of a wrong frequency	Switch from full to half wave or vice versa (see annexed control module manuals)
Wrong voltage control range	Set the min-max potentiometer as described in the control unit (see annexed control module manuals)
Air gap between magnet and armature has changed	Set a uniform air gap (see annexed control module manuals)
Spring fastening torques are different	Adjust fastening torques (see annexed control module manuals)
Broken spring	Replace the broken spring
oscillation magnets defective	Replace the defective oscillation magnets

If the defect is serious (magnet gap changed, oscillation magnet defective, leaf spring broken) it is recommended to contact SIM Automation because setting the drives needs experience and suitable measuring instruments.

6. Maintenance and repairs, cleaning

Observe all safety instructions for the helical conveyor, in particular, those for maintenance and repairs. Repair work must only be carried out by authorized technical personnel. This applies, in particular, to work at electrical and compressed air equipment.

Use lint free cotton cloth or tissue paper for cleaning the helical conveyor.

If chemical cleaners are used, all manufacturer instructions for safety and health should be observed.

Mounted helical conveyors of polyamide:

Synthetic polyamides are of high strength, stiffness and very good chemical resistance.

They are also very resistant to wear, and slide easily.

Synthetic polyamides can be cleaned with industrial or domestic cleaner or water. If water and cleaners are used together, make sure that the mounted helical conveyor is dried with a dry, lint free cloth after cleaning. If this is not done, polyamide absorbs water and dimensions can change.

Mounted helical conveyors of high-alloy steel / stainless steel (X5CrNi18.10):

This material consists of steel with 18% chromium and 10% nickel.

It is corrosion free and resistant to heat and acid. The corrosion resistance of chrome-nickel steel is reduced by acids and halogenated compounds (chlorides, bromides, iodides).

- Do not use chlorine solution for cleaning.
- Avoid external rust (e.g. iron powder)

Stainless steel can be cleaned with all domestic and industrial cleaners (without additions, such as chlorides, bromides or iodides and no abrasive material) and water or soapsuds.

Mounted helical conveyors with metaline lining:

Metaline is polyurethane, it is highly wear-resistant, permanently elastic and food-safe and it also protects the surface from corrosion. Its main purpose is to reduce noise.

Chemical resistance:

	Phosphoric acid (85%)	very good
	Hydrochloric acid (10%)	good
	Sulfuric acid (10%)	good
\triangleright	Ozone	very good
\triangleright	Carburetor fuel/kerosene	good
	Aliphatic hydrocarbons	very good

Surfaces lined with metaline can be cleaned with warm water and soapsuds. All water-soluble commercial domestic and industrial cleaners can also be used.

Cleaner containing alcohol should not be used due to the associated danger and the possibility that the sliding properties of the material can be impaired.

Mounted helical conveyors with brush lining and felt:

The brush lining improves the movement of parts and reduces noise. Remove brush lined surfaces carefully from dust and dirt; use a vacuum cleaner.

Surfaces of steel or aluminium:

All surfaces of aluminium and treated steel surfaces can be cleaned with commercial domestic or industrial cleaner (without additions, such as chlorides, bromides or iodides).

Murtfeldt "S" green/black/natural:

Murtfeldt "S" is a low-density polyethylene. It is wear-resistant, of food grade and reduces noise, has very good sliding properties, requires nearly no maintenance and is antistatic (only Murtfeldt "S" black). Murtfeldt "S" has good resistance to chemicals, i.e., no surface protection is required. Murtfeldt "S" can be cleaned with warm water and soapsuds. Stubborn dirt can be removed with domestic or industrial cleaner.

Sensors:

Sensors should be cleaned with great care. Remove dirt and dust from sensors carefully with a dry cotton cloth or tissue paper.

7. Instructions for transportation

For transportation, make sure that the safety instructions and the **Transport checklist** is observed.

7.1. Transportation

Apply securing devices to all free moving components before transporting the helical conveyor. Also make sure that all pipes and hoses are secured.

Move and, in particular, lift the helical conveyor only at the counterweight and use the right type of load suspension device / transport tool.

Move the helical conveyor in such a way that it cannot be displaced.

Make sure that the helical conveyor is not damaged during transportation. Maintain sufficient distance to other equipment (e.g., walls, other transport items).

Ensure that all securing devices are adequate for the load which they are to carry. Make sure that when unit is moved, the supply lines and machine parts are not damaged.

Figure 9: Transport lug for lifting the helical conveyor

Drives of type SF 300; SF 500; and SF 800 should be lifted at their transport lugs. Install it to the spacer bolt in the center of the helical conveyor top mount.

Transport check list:

- > All supply and drain lines should be disconnected
- > The helical conveyor top mount should firmly be connected to the drive
- Use pallets/cases of sufficient size
- Projecting parts are protected by bubble film
- No part of the helical conveyor projects beyond the pallet outline
- The helical conveyor is protected from moisture by plastic film
- > Lifting points are marked if necessary
- Warnings have been attached to packaging/film
- Documentation is packed with the equipment

7.2. Storage

Before storing or transporting the components to the place of destination or putting them in storage, apply suitable corrosion inhibitor to all bare parts of the machine which are not made of stainless steel or have a corrosion protection coat. Protect all components from moisture. Ensure a safe stand of the equipment.

Disconnect all supplies to prevent unauthorized use.

8. Installation and adjustment

8.1. Taking the helical conveyor out of the transport crate / unpacking

Inspect the helical conveyor for transport damage when it arrives. Inform the supplier of any damage in transit without delay to secure possible claims on the forwarder or insurer.

Unpack the helical conveyor with utmost care.

An instruction booklet is packed together with the helical conveyor, refer to the booklet for information of how to remove the transport blocks and make all required settings.

Make sure that all instructions are strictly observed.

Checklist for receiving the helical conveyor:

- Inspect the equipment for visible transport damage before removing the packaging. Notify SIM Automation of all damage without delay.
- When unpacking goods (especially with the help of sharp-edged tools), make sure not to damage parts of the machine, notably hoses or cables.
- Make another check for transport damage.
- ➤ If transport securing devices have been fitted, this is noted on the equipment and instructions given. Observe the instructions and remove the securing devices as prescribed.

8.2. Assembly, installation and setting up

The equipment should be installed and set up only by authorized and qualified personnel.

The helical conveyor drive has 3 or 4 rubber buffers which are screw-fastened to the base from below. For pitch circle, number and thread type, see chapter 2.6.3 Technical parameters.

Preferably, the helical conveyor should be fixed with brackets or leveling devices. These parts can be obtained from SIM Automation.

The helical conveyor top mount is connected to the drive by edge connectors or a central fastening mechanism. For tightening torques, magnet gap, see chapter 2.6.4.

The downstream machine assemblies (linear lines, singling units, heads, etc.) should have a minimum distance of 0.5 to 2.0 mm to the discharge of the helical conveyor top mount.

A distance of up to 5.0 mm should be maintained if helical displacement is very large.

Sorting by air jet requires filtered compressed air free of oil and of 5 bar pressure.

8.3. Electrical installation

The electrical connection may only be made by authorized, qualified and experienced personnel in accordance with VDE and in accordance with the applicable regulations. All motor or switching relay connections are factory set to plug.

Likewise, the device is already grounded. Ensure sufficient supply cable cross-section. The connection cable must have a properly connected protective conductor.

The helical conveyors should preferably be equipped with control modules from SIM Automation. In this case the control range is set in the control module by min-max potentiometer. The settings are stored on the control unit memory.

If the settings must be changed, refer to the control unit manual.

	Control unit / Frequency converter				
Тур	Item number	Input voltage	Output voltage	Power frequency	Description
RGF-8	1003767	230 V	0-200 V	50 Hz	with release input
RGFZ-8	1003591	230 V	0-200 V	50 HZ	with enable input and additional timing for congestion shut down
RGF-8/1	1010436	115 V	0-105V	60 HZ	with release input
RGFZ-8/1	1288859	115 V	0-105V	60 HZ	with enable input and additional timing for congestion shut down
EWR-8	1061510	230 V 115 V	30-200V	50 Hz 60 Hz	Insertion
WR-8	1307204	230 V 115 V	30-200V	50 Hz 60 Hz	based on EWR-8 (in the case, with plug)
ERGF-1	17394	230 V	0-215 V	50 Hz	Insertion front cover breadth 8TE
ERGF-1/1	17951	115 V	0-105 V	60 Hz	Insertion front cover breadth 8TE
ERGF-1-7TE	1016121	230 V	0-215 V	50 Hz	Insertion front cover breadth 7TE
ERGF-1/1-7TE	1010486	115 V	0-105 V	60 Hz	Insertion front cover breadth 7TE

9. Shutting down, disposal

Make sure that the feeding unit/machine is dismantled and disposed of properly and in accordance with prescriptions.

All applicable legal and company provisions and regulations must be observed. At first, depressurize and electrically isolate all components and then disconnect all supplies.

Dispose of all parts of the feeding unit/machine, of operating fluids and auxiliary substances in such a way that health and ecological hazards are avoided.

List of materials for helical conveyors and control units

Main	Main materials				
No.	Material	Location			
1	Steel	Machine construction parts			
2	Aluminium	Machine construction parts			
3	Copper	Cables, oscillation magnets			
4	Galvanized sheet	Terminal boxes			
5	Plastic, rubber, PVC	Trim panels, seals, cables, disks			
6	Tin	Circuit boards			
7	Polyester	Circuit boards			
Mate	rials requiring separate disposa	1			
No.	Material	Location			
1	Electronic scrap	Electrical supply			
		Circuit boards of electronic assemblies			

10. Helical conveyor accessories

Level monitoring	capacitive, optical, mechanical, ultrasonic		
Noise enclosure	transparent hinged covers Reduces the noise level at least by 10dB (A)		
Rack	height adjustment by spindle		
Lining of the helical conveyor top mount	for part conserving transport and optimum conveyance (optionally: polyurethane, brush lining, felt and others)		
Extras	Flap for fast emptying of the helical conveyor top mount		
Control unit	In the top mount housing of aluminium die casting or in 19" rack (with several additional functions and connections)		
Brackets	for attaching the helical conveyor from top		
Leveling elements	for height setting (low, medium, high)		

11. Spares parts – quickly wearing parts

11.1. Order details

When ordering spares or parts subject to quick wear and tear, please specify the *type* and the *serial number*.

See the nameplate on the counterweight or on the drive housing.

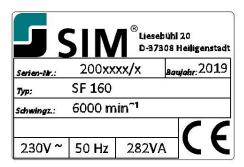
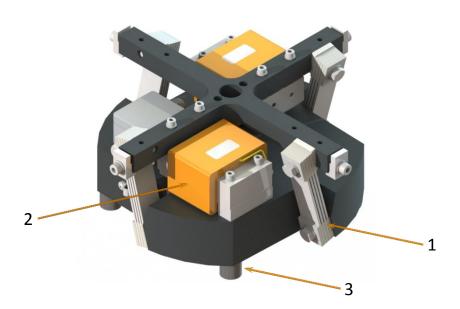



Fig. 10: Nameplate

11.2. List of parts subject to quick wear and tear

Manufacturer/ supplier data			Users date		
Item.	Quantity	Unit	Description	Note	Qty. ordered
1		pieces	Spring		
2		pieces	Oscillation magnet		
3		pieces	Rubber puffer		

12. Annexes

- User's manual Control Unit RGF / RGFZ / WR-8 / EWR-8 / ERGF

SIM Automation GmbH Liesebühl 20 D-37308 Heilbad Heiligenstadt, Germany

**** +49 (0)3606 / 690-0**

49 (0)3606 / 690-370

info@sim-automation.de www.sim-automation.de